🕸️

"obsessed" by human-robot relations from early childhood onwards (hello Johny 5!)

Čapek, Asimov, Turing, Cyberpunk ...

since beginning of my academic life I try to transpose main elements of ontogeny of human intelligence into computational domain (Master: Facial expression recognition; PhD: Computational models of language acquisition)

2011 Paper "Central Problem of Roboethics: from defintion towards solution" provides a potential solution to what AI folks label these days as "Alignment problem"

the solution is: To raise machines as we raise our (own) children.

one of the last pieces of puzzles is "peer learning"

Maschinelles Lernen (Machine Learning) gibt Computern die Fähigkeit, "zu lernen" ohne explizit für eine spezifische Aufgabe programmiert zu sein. Maschinelles Lernen ermöglicht es Computern, Muster und allgemeine Gesetzmäßigkeiten in Daten zu erkennen, die es ihnen später erlauben, unbekannte Informationen vorherzusagen oder zu klassifizieren. Zum Beispiel kann ein maschinelles Lernsystem lernen, Katzen auf Fotos zu erkennen, indem es "studiert", was Tausende von Katzenbildern gemeinsam haben und lernt, welche Merkmale oder Eigenschaften für Katzen typisch sind. Solch ein System kann dann eine Katze auf einem neuen, bisher ungesehenen Bild identifizieren.
Künstliche Intelligenz (KI, oder auf Englisch "Artificial Intelligence", AI) bezieht sich auf die Simulation menschlicher Intelligenz in Maschinen, die so programmiert entworfen sind, dass sie denken und lernen können wie Menschen. KI umfasst mehrere Aspekte wie Lernen, Problemlösung, Wahrnehmung, Sprach- und Bildverständnis usw. Das Wesentliche ist, dass Systeme mit künstlicher Intelligenz Aufgaben ausführen können, die, wenn sie von einem Menschen ausgeführt würden, den Einsatz von Intelligenz erfordern würden.
[Impressum, Datenschutz, Login] Other subprojects of wizzion.com linkring: udk.ai teacher.solar baumhaus.digital fibel.digital refused.science kyberia.de giver.eu gardens.digital naadam.info puerto.life