👂 🎴 🕸️
<
p
class
=
fragment
>
Raw
Features
:
occurence
of
specific
character
sequences
''
word
or
token
counts
''
sequence
length
p
><
p
class
=
fragment
>
Engineered
Features
:
Word
embeddings
(
e
.
g
.''
Word2Vec
''
BERT
embeddings
),
p
><
p
class
=
fragment
>
Context
:
In
sentiment
analysis
''
embeddings
provide
dense
''
meaningful
representations
of
text
features
.
p
>
<
p
class
=
fragment
>
Raw
Features
:
Pixel
intensity
values
''
RGB
color
values
.
p
><
p
class
=
fragment
>
Engineered
Features
:
Haar
features
''
Gabor
wavelets
''
Histogram
of
gradients
(
HOG
)''
edge
counts
''
convolutional
feature
maps
.
p
><
p
class
=
fragment
>
Context
:
In
object
detection
''
pixel
patterns
or
edge
-
based
features
help
detect
objects
in
the
image
.
p
>
<
p
class
=
fragment
>
Raw
Features
:
Waveform
amplitudes
''
signal
energy
.
p
><
p
class
=
fragment
>
Engineered
Features
:
Mel
-
frequency
cepstral
coefficients
(
MFCCs
)''
spectrogram
data
''
pitch
.
p
><
p
class
=
fragment
>
Context
:
In
speech
recognition
''
MFCCs
are
features
extracted
to
characterize
the
audio
signal
.
p
>
[Impressum, Datenschutz, Login] Other subprojects of wizzion.com linkring: gardens.digital refused.science naadam.info teacher.solar udk.ai puerto.life fibel.digital baumhaus.digital giver.eu kyberia.de