Supervised learning parallels human learning through its reliance on guidance from labeled examples, similar to how humans learn with feedback. For instance, when a child learns to identify objects, they receive input (the object) and a corresponding label (e.g., "dog" or "apple") from a teacher or parent. Mistakes are corrected, reinforcing the connection between input and label, much like how supervised learning algorithms adjust their predictions based on errors.
In supervised machine learning, training is the process of teaching a model, like a classifier, to make accurate predictions by learning patterns from labeled data. Each data point in the training set includes features (characteristics or inputs that describe the data, like size or color) and a corresponding label (the correct output or category). The model uses this data to adjust its internal parameters, minimizing the error between its predictions and the actual labels. This is done through algorithms like gradient descent. The goal is to generalize from the training data, enabling the classifier to make accurate predictions on new, unseen data.
In supervised machine learning, *testing* (or *inference*) is the process of evaluating a trained model's ability to make accurate predictions on new, unseen data. During this phase, the model is given data points with *features* (inputs like size or color) but without the labels it was trained on. The model uses the patterns it learned during training to predict the labels for this data. The results are then compared to the actual labels (if available) to measure the model's performance using metrics like accuracy or precision. Inference is the final application of the model to make real-world predictions.
A classifier in machine learning is a model or algorithm designed to categorize data into predefined groups or labels. It takes input data, analyzes its features, and assigns it to a specific class based on learned patterns from training data. For example, a classifier might identify whether an email is spam or not spam, or recognize handwritten digits. Classifiers are essential in supervised learning tasks and operate by minimizing errors in predictions through training on labeled datasets. Common types include neural networks, support vector machines, decision trees etc.