🕸️
Imagine you have a map with various paths and you need to find the shortest way to a treasure. Each path has its own rules, like how much weight you can carry or how fast you can travel. The Simplex algorithm helps you navigate these paths and rules to find the most efficient route to the treasure.

In technical terms, it deals with equations representing constraints (like the rules of each path) and a goal (like reaching the treasure in the shortest time). The algorithm iteratively explores vertices on a multidimensional shape (the map), checking at each step if it's closer to the best solution. It's like checking each intersection on a map to see if you're closer to the treasure. This continues until it finds the most efficient route, giving you the best solution to your problem.
Here is a CSV containing information about nutritive values of different vegetables growable in a German garden, last column also contains expected yield per square meter. Please provide a combination of vegetables which would satisfy nutritive need of an adult man so that the surface on which the vegetables grow is minimized. To have the meal diversified, there should be not more than 300g of certain vegetable.
Diet Problem (DP) involves finding the most cost-effective diet that meets all nutritional requirements. Imagine you have a list of foods, each with its own nutritional content and cost. Your goal is to choose a combination of these foods that provides all the necessary nutrients (like vitamins, proteins, carbohydrates, etc.) for the least possible cost. You set up equations for each nutrient, ensuring your diet doesn't fall short or exceed what's needed. Then, you use linear programming to minimize the total cost while satisfying these nutritional constraints. It's like solving a puzzle where you balance your health needs against your budget, finding the best possible dietary plan.

Focus: LP deals specifically with linear equations and inequalities. This means it works with problems where relationships are represented as straight lines (hence 'linear').

Objective: It always aims to find the maximum or minimum value of a linear equation, known as the objective function. For example, maximizing profit or minimizing cost.

Method: LP uses specific mathematical methods, like the Simplex algorithm, to find the best solution.

Constraints: All constraints in LP are linear (straight-line relationships). For instance, you can't spend more than a certain budget, or you need at least a certain amount of some ingredient.

Solutions: Solutions in LP are often numerical and can include fractions or decimals.

[Impressum, Datenschutz, Login] Other subprojects of wizzion.com linkring: naadam.info puerto.life kyberia.de fibel.digital refused.science baumhaus.digital giver.eu udk.ai teacher.solar gardens.digital